Dynamics of D2 released from the dissociation of D2O on a zirconium surface.
نویسندگان
چکیده
Hydrogen is efficiently released during water dissociation on zirconium (Zr), while even very rapid temperature programmed heating of a hydrogen covered Zr surface predominantly leads to dissolution (approximately 99% dissolution). To help resolve these apparently contradictory observations, we have studied the dynamics of water (D2O) dissociation on a crystalline Zr surface by probing the rotational and vibrational energy distributions of the D2 produced using resonant enhanced multiphoton ionization spectroscopy. The internal-state energy distribution of the D2 product was found to be rotationally cold and vibrationally hot with respect to the temperature of the surface. The rotational distribution shows slight deviations from Boltzmann's law, with a mean rotational temperature of 426 K while the surface is at 800 K. The population of the nu"=1 vibration is at least four times higher than a 800 K temperature would allow, this corresponding to a vibrational temperature of 1100 K. Information on the translational energy of the D2 product have also been obtained by time-of-flight spectroscopy and it is found to be nearly thermally equilibrated with the surface temperature. Similar results were obtained from studies of D2 scattered from a clean Zr surface, and of D2 released by a slow thermal desorption process which involves dissolved hydrogen as the source. The reconciliation of the present results with those for thermal desorption of preadsorbed hydrogen implies a role for both surface and subsurface adsorption sites on the Zr surface and clearly demonstrates that at high temperatures, the release of D2 arises from the recombinative desorption of adsorbed hydrogen formed by the complete dissociation of D2O.
منابع مشابه
The Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study
In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...
متن کاملFabrication of a yellow ceramic nano pigment based on zirconium oxide (ZrO2) and iron oxide as dopant (Fe2O3)
In this study, yellow ceramic nano pigments based on ZrO2 (zirconium oxide) were synthesized by solid state method using different value of Fe2O3 as dopant. The pigments were dispersed in solvent by a planetary ball mill and then the inks were printed on the ceramic surface using screen printing method. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction spectr...
متن کاملEffect of surface roughness on coating SiO2-P2O5-CaO-ZrO2 upon Zirconium by Sol-Gel Method
Zirconium and its alloys have many applications in orthopedic medicine and compared to stainless steel, titanium and other metals used in the manufacture of implants has higher strength and corrosion resistance. Research shows that the method of preparation and surface modification before coating process has a significant impact on improving the metal implants among which include the sandblasti...
متن کاملThree-Body Dissociation Dynamics of Excited States of O3(D2O)
In these experiments, the dynamics of the three-body dissociative photodetachment of O3(D2O) at 258 nm are directly probed for the first time. Photodetachment of a negatively charged precursor, with coincident energy analysis of the photoelectron, allows production of energy-selected excited-state O3(D2O) complexes. By measurement of the laboratory velocities and recoil angles of the O + O2 + D...
متن کاملThe Effect to Epsilon Phase on the Friction and Wear of Nitrided Die Steels (RESEARCH NOTE)
In this paper, the wear resistance and antifriction of epsilon phase layer and diffusion layer of gas nitrided D2 steel and M2 steel have been studied. The changes m wear mechanism of epsilon phase under the load from 20N to 200N are analysed. When the load is lighter than 100N, it is mainly oxidizing wear on friction surface. The adhesion, peeling off and abrasive wear appear on friction surfa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 124 12 شماره
صفحات -
تاریخ انتشار 2006